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Diffusion in supersonic turbulent compressible flows
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We investigate diffusion in supersonic turbulent compressible flows. Supersonic turbulence can be charac-
terized as network of interacting shocks. We consider flows with different rms Mach numbers and where
energy necessary to maintain dynamical equilibrium is inserted at different spatial scales. We find that turbulent
transport exhibits superdiffusive behavior due to induced bulk motions. In a comoving reference frame, how-
ever, diffusion behaves normal and can be described by mixing-length theory extended into the supersonic
regime.
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[. INTRODUCTION [10-14. Although highly compressible supersonic turbulent
flows have been studied in several specific astrophysical con-
Laboratory and terrestrial gases and liquids are usuallyexts[15—-37, the diffusion properties of such flows have not
well described by incompressible flows.g., Ref.[1]). In  been investigated in detail.
contrast, the dynamical behavior of typical astrophysical Itis the goal of this paper to analyze transport phenomena
gases are characterized by poorly understood highly conil supersonic compressible turbulent flows and to demon-
pressible supersonic turbulent moti¢see, e.g., Ref[2]). strate that—analogous to the incompressible case—a simple
For example, the large observed linewidths in large molecutixing-length description can be found even for strongly
lar clouds show direct evidence for the presence of chaotisupersonic and highly compressible turbulence. We first
cally oriented velocity fields with magnitudes in excess ofbriefly recapitulate in Sec. Il the Taylor formalism for de-
the sound speed. This random motion carries enough kinetcribing the efficiency of turbulent diffusion in subsonic
energy to counterbalance and sometimes overcompensate tf@wvs. In Sec. lll, we describe the numerical method which
effects of self-gravity of these cloud3]. The intricate inter- We use to integrate the Navier-Stokes equation. In Sec. IV,
play between supersonic turbulence and self-gravity deteive report the diffusion coefficient obtained in our numerical
mines the overall dynamical evolution of these clouds andnodels, and in Sec. V, we introduce an extension of the well
their observable features such as their density structure, tH&0wn mixing-length approach to diffusion into the super-
star-formation rate within them, and their lifetimes. Thus, itSOnic compressible regime. Finally, in Sec. VI we summarize
is important for the description of many astrophysical sys-Our results.
tems to understand in detail the momentum and heat transfer
properties of compressible turbulent gases. Il. A STATISTICAL DESCRIPTION
Some important clues on the nature and efficiency of mix- OF TURBULENT DIFFUSION
ing associated with the clouds’ supersonic turbulence can be
constrained by the observed metallicity distribution of the, d by studving the i \uti f th d iral
stars formed within them. In the Pleiades cluster, stars whic ed Dy studying the ime evolution ot the se,cqn centra
emerged from the same molecular cloud have nearly identi_r_’noment of'some representative fluid-elements’ displacement
cal metal abundandé]. This astronomical context therefore in the medium,
imposes a strong motivation for a general analysis of the 2 N > N2
traFr)lsport and mi?dng processes in gompressibleysupersoni- )= - i), @D
where the averagé¢-); is taken over an ensemble of pas-

Transport properties in fluids and gases can be character-

cally turbulent media.
rA?aIiyt'(i?I rantgrinturgetrlcal rftlijr?lfesmﬁ{ d'ﬁl]fs'f:nti ptiroclesfe_ssively advected tracer particlés(e.g., dye in a fluid, or
are typically restricted to certain famiiies ot statistical pro- g, jn aiy that are placed in the medium at a tirrfleat
cesses, such as random wal or remapping models or e , ,
certain Hamiltonian systenj$]. The direct numerical mod- Positionsri(t’); or where the average is taken over the fluid
eling of turbulent physical flows mostly concentrates on in-molecules themselvesgor equivalently, over sufficiently
compressible medide.g., Refs.[7-9)), but some studies small and distinguishable fluid elementShe dispersion
have been extended into the weakly compressible regimé "€ spatial dlrect|on,2 say along the coordinate, is
E(t—t")=([x(t)—x;(t")]%);. For isotropic turbulence it
follows that §§=§§=§§=1/3§§. For fully developed sta-
*Electronic address: rklessen@aip.de tionary turbulence, the initial timé&' can be chosen at ran-
"Electronic address: lin@ucolick.org dom and for simplicity is set to zero in what follows.
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The quantityé;(t) can be associated with the diffusion . NUMERICAL METHOD

coefficientD as derived for the classical diffusion equation - .
In order to utilize the above formalism, we carry out a

series of numerical simulation of supersonic turbulent flows.
m_ DV2n, (2)  Avariety of numerical schemes can be used to describe the
ot time evolution of gases and fluids. By far the most widely
used and thoroughly studied class of methods is based on the
where n(r;,t) is the probability distribution function for finite difference representations of the equations of hydrody-
finding a particlei at positionr;(t) at timet when it initially ~ hamics(e.g., Ref.[42]). In the most simple implementation,
was at a Iocationfi(O). This holds if the particle position is the fluid properties are calculated on equidistant spatially

a random variable with a Gaussian distributi@g]. In the fixed grid points in a Cartesian coordinate system. Finite
. -~ . difference schemes have well defined mathematical conver-
classical sensen(r,t) may correspond to the contaminant

density in the medium. Equatioi2) holds for normal diffu- gence properties, and can be generalized to very complex,

. ! ._time varying, nonequidistant meshes with arbitrary geometri-
sion processes and for time scales larger than the typlC"iual properties. However, it is very difficult to obtain a La-
particles’ correlation time scale. '

| I h the L ian diffusi ffici tgrangian description, which is essential when dealing with
_'n general, however, the Lagranglan diftusion coethicien compressible supersonic turbulence with a high degree of
is ime dependent and can be defined as vorticity. Methods that do not rely on any kind of mesh rep-
) resentation at all are therefore highly desirable.
déx(t) - - For the current investigation we use smoothed particle
D=—4; =2(ri(t)-vi(t))i, (3 hydrodynamicgSPH, which is a fully Lagrangian particle-
based method to solve the equations of hydrodynamics. The
- - ) . ) fluid is represented by an ensemble of particles, where flow
wherev;(t)=dr;(t)/dt is the Lagrangian velocity of the par- gnerties and thermodynamic observables are obtained as
ticle. The diffusion coeﬁicient along one spa_1tia| direction, |gcq) averages from a kernel smoothing procedtypically
say 2a|ong thex coordinate, follows accordingly a®,  pased on cubic spline functionp43,44). Each particlei is
=d&(D)/dt=2(x()vxi(1)); . Equation(3) holds for homo- . 1 terized by mass,, velocity v;, and positionr; and
geneous turbulence with zero-mean velocity. Froftt)  carries in addition density;, internal energy; or tempera-

=Fi(0)+ff)5i(t’)dt’ it follows that ture T;, and pressure;. The SPH method is commonly
used in the astrophysics community because it can resolve
R t . large density contrasts simply by increasing the particle con-
D(t)=2<[ri(0)+ jovi(t')dt’ ’vi(t)> centration in regions where it is needed. This versatility is
1

important for handling compressible turbulent flows where
i density fluctuations will occur at random places and random
=2f (vi(t")-vi(t))dt’. (4)  times. The same scheme that allows for high spatial resolu-
0 tion in high-density regions, however, delivers only limited
spatial resolution in low-density regions. There, the number
The above expression allows us to relBtg) to the trace of density of SPH particles is small and thus the volume neces-
the Lagrangian velocity autocorrelation tenso€(tr-t") sary to obtain a meaningful local average tends to be large.
=(v;(t')-v;i(t)); as Furthermore, SPH requires the introduction of a von Neu-
mann Richtmyer artificial viscosity to prevent interparticle
¢ ¢ penetration, shock fronts are thus smeared out over two to
D(t):zf trc(t—t’)dt’:zf trC(t')dt’, (50  three local smoothing lengths. Altogether, the performance
0 0 and convergence properties of the method are well under-
stood and tested against analytic models and other numerical
a result which was derived by Taylor already 1921[29].  schemes, for example, in the context of turbulent supersonic
This formulation has the advantage that it is fully generalastrophysical flow$21,45-47, and its intrinsic diffusivity is
and that it allows us to study anomalous diffusion processesulfficiently low to allow for the current investigation of tur-
Note that strictly speaking any transport process Witft) bulent diffusion phenomena8].
not growing linearly in time is called anomalous diffusion.  To simplify the analysis, we assume that the medium is
This is always the case for time intervals shorter than thénfinite and isotropic on large scales, and consider a cubic
correlation timer, but sometimes anomalous diffusion can volume which is subject to periodic boundary conditions.
also occur fort> 7. If &(t)=t® and if a<1 transport pro- The medium is described as an ideal gas with an isothermal
cesses are callegslibdiffusiveif «>1 they are calleduper- equation of state, i.e., pressyseelates to the density as
diffusive[1,6,40,4]1. Studying transport processes directly in p=c§p with ¢4 being the speed of sound. Throughout this
terms of the particle displacement, i.e., Hd), is useful paper we adopt normalized units, where all physical con-
when attempting to find simple approximations to the diffu- stants(such as the gas constaribtal masdM, mean density
sion coefficientD(t), for example, in a mixing-length (p), and the linear sizk of the cube all are set to unity. The
approach. speed of sound isg=0.05, hence, the sound crossing time
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TABLE |. Model properties.

Model® k® M° tooss’ 0% o®  a,° Du(®)' Dy(=)" Dy=)'  24,/k9 20,1k 9 20,1k 9

0¢ 1-2 06 353 0.030 0.028 0.027 0.027 0.021 0.019  0.030-0.060 0.028-0.057 0.027-0.054
0i 3-4 05 39.1 0026 0.026 0.025 0.010 0.010 0.009  0.013-0.017 0.013-0.017 0.013-0.017
Os 7-8 0.4 462 0.021 0.022 0.022 0.005 0.005 0.005 0.005-0.006 0.005-0.006 0.005-0.006
1¢ 1-2 1.9 104 0.106 0.084 0.098 0.140 0.069 0.111 0.106-0.213 0.084-0.167 0.098-0.196
1i 3-4 1.9 106 0.097 0.096 0.092 0.042 0.047 0.038  0.048-0.065 0.048-0.064 0.046-0.061
1s 7-8 1.7 115 0.086 0.089 0.087 0.025 0.026 0.024  0.021-0.024 0.022-0.025 0.022-0.025
2¢ 1-2 31 6.5 0.173 0.129 0.158  0.223 0.103 0.169 0.173-0.346  0.129-0.257 0.158-0.315
2i 3-4 31 6.4 0167 0.155 0.151 0.084 0.071 0.063  0.083-0.111 0.077-0.103 0.075-0.100
2s 7-8 3.2 6.3 0.154 0.163 0.157 0.044 0.054 0.047  0.038-0.044 0.041-0.046 0.039-0.045
3¢ 1-2 5.2 3.8 0.301 0.252 0.227 0.314 0.245 0.169  0.301-0.603 0.252-0.505 0.227-0.454
3i 3-4 58 3.5 0.261 0.287 0.316 0.131 0.189 0.233  0.130-0.174 0.143-0.191 0.158-0.211
3s 7-8 5.8 34 0297 0.288 0.289 0.106 0.092 0.091 0.074-0.085 0.072-0.082 0.072-0.083
4¢ 1-2 8.2 2.4 0.467 0.318 0.444  0.693 0.241 0.558 0.467-0.933 0.318-0.635 0.444-0.887
4i 3-4 97 2.1 0.451 0.478 0.520 0.248 0.323 0.349 0.225-0.301 0.239-0.319 0.260-0.347
4s 7-8 104 1.9 0.532 0.513 0.519 0.194 0.167 0.170 0.133-0.152 0.128-0.147 0.130-0.148

8Model identifier, with the letterg, i, ands standing for large-scale, intermediate-wavelength, and short-wavelength turbulences, respec-
tively.

®Driving wavelength interval.

‘Mean Mach number, defined as ratio between the time-averaged one-dimensional velocity dimﬁlz(gi-ﬁ-;i-&-;i) Y2 and the
isothermal sound speed, M:;U /cs. The values for the different velocity componerty, andz may differ considerably, especially for
large-wavelength turbulence. Please recall from Sec. Ill that the speed of soeyxd0i95, and thus the sound crossing titgg,,;= 20.
daverage shock crossing time through the computational volume.

€Time-averaged velocity dispersion along the three principal axesy, and z e.g., for the x component;)%:f},([vxi(t’)
—(vyi(t)i1?dt' It

*Mean-motion corrected diffusion coefficients along the three principal axes computed frof®) Eay. time intervalsts 7.

9Predicted values of the mean-motion corrected diffusion coefficiBrjts D,,, and D, from extending mixing-length theory into the
supersonic regiméSec. .

through the cube follows ak,,~=20. In all models dis- appreciable contributions from differential rotatiafne.,
cussed here, the fluid is represented by an ensemble &heay in the galactic disk and energy input from supernova
205379 SPH particles which gives sufficient resolution forexplosions ending the lives of massive stg5&]. Compa-
the purpose of the current analysis. rable to the values observed in interstellar gas, we study
Supersonic turbulence is known to decay rapidlyflows with Mach numbers in the range 0.5-10, where we
[17,34,45,49-5]1 Stationary turbulence in the interstellar define the Mach number from trene-dimensionaims ve-
medium therefore requires a continuous energy input. Tdocity dispersiono, as M=o,/c,. For each value of the
generate and maintain the turbulent flow we introduce ranpach number we consider three different cases, one case
dom Gaussian forcing fields in a narrow range of wave numyhere turbulence is driven on large scales ofilg., with
bers such that the total kinetic energy contained in the systefjaye numbersk in the interval k<k<2), intermediate-
remains approximately constant. We generate the forcingayelength turbulence @k<4), and small-scale turbu-
field for e"’?Ch ldlrectlon separately and simply "?‘dd up thgnce (7=k=8), as summarized in Table I. Note that our
three contributions. Thus, we excite both solenoidal as wel odels are not subject to global shear because of the adopted

as compressible modes at the same time. The typical rati eriodic boundary conditions. We call turbulence “large

between the solenoidal and compressible energy componerits_, _,, : . L
is between 2:1 and 3:1 in the resulting turbulent fisee, scale” when the Fourier decomposition of the velocity field

e.g., Fig. 8 in Ref[21]). We keep the forcing field fixed in is dominated by the largest scales possible for the considered

space, but adjust its amplitude in order to maintain a constarfolumeL?, i.e., the system becomes isotropic and homoge-
energy input rate into the system compensating for the erf?€0US only on scales larger thanOn scales below. it may

ergy loss due to dissipatiofifor further details on the gxhlblt a_con5|derable degree of anisotropy. This is most no-
method, see Refd20,21]). This nonlocal driving scheme ticeable in the casetk=<2 because wave number space is
allows us to exactly control théspatia) scale which carries Very poorly sampled and variance effects become significant.
the peak of the turbulent kinetic energy. It is this propertyThe system is dominated by one or two large shock fronts
that motivated our choice of random Gaussian fields as drivthat cross through the medium. In the intervat k<8, the

ing source. In reality the forcing of turbulence in the inter- number of Fourier modes contribution to the velocity field is
stellar medium is likely to be a multiscale phenomenon withlarge, and the system appears more isotropic and homoge-
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t=1.25 [tcross] ) i : t=1.25 [tcross]

FIG. 1. Density and velocity structure of model$,22i, and X (from left to right). The panels show cuts through the center of the
computational volume normal to the three principal axes of the system, after one shock crossingdimie/ o,~6.5 and 1/4t,sslater.
Density is scaled logarithmically as indicated in the gray scale key at the upper left side. The maximum den&®@,isvhile the mean
density is one in the normalized units used. Vectors indicate the velocity field in the plane. The rms Mach nulbeB.is. Large-scale
turbulence (2) is dominated by large coherent density and velocity gradients leading to a large degree of anisotropy, whereas small-scale
turbulence (8) exhibits noticeable structure only on small scales with the overall density structure being relatively homogeneous and
isotropic.

neous already on distances smaller tHanThis trend is clouds and in other supersonically turbulent compressible
clearly visible in Fig. 1. flows.

Similar to any other numerical calculations, the models
discu_ssed he_re fall short of des_cribing real gases in compre- IV. TRANSPORT PROPERTIES
hensive details as they cannot include all physical processes
that may act on the medium. In interstellar gas clouds, trans- Supersonic turbulence in compressible media establishes
port properties and chemical mixing will not only be deter-a complex network of interacting shocks. Converging shock
mined by the compressible turbulence alone, but the densitfyonts locally generate large density enhancements, diverging
and velocity structure is also influenced by magnetic fieldsflows create rarefied voids of low gas density. The fluctua-
chemical reactions, and radiation transfer processes. Furthdiens in turbulent velocity fields are highly transient, as the
more, all numerical models are resolution limited. The tur-random flow that creates local density enhancements can dis-
bulent inertial range in our large-scale turbulence simulationperse them again. The lifetime of individual shock-generated
spans over about 1.5 decades in wave number. This range ¢lumps corresponds to the time interval for two successive
considerably less than what is observed in interstellar gashocks to pass through the same location in space, which in
clouds. The same limitation holds for the Reynolds numbersurn depends on the length scale of turbulence and on the
achieved in the models, they fall short of the values in reaMach number of the flow.
gas clouds by several orders of magnitude. Nevertheless, de- The velocity field of turbulence that is driven at large
spite these obvious shortcomings, the results derived here dwavelengths is found to be dominated by large-scale shocks
characterize global transport properties in interstellar gasvhich are very efficient in sweeping up material, thus creat-
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FIG. 2. Time evolution of the mean flow veIoci(xZi(t»i in models Z, 2i, and . Timet and velocityv are given in normalized units
(Sec. .

ing massive coherent density structures. The shock passirggnall wave numbers €£k<2), (b) intermediate (3<k

time is rather long, and shock-generated clumps can travek4), and(c) small scalegwith 7<k<8). The net accelera-
quite some distance before being disrupted. On the contraryion is most pronounced when turbulent energy is inserted on
when energy is inserted mainly on small scales, the networihe global scales, as in this case larger and more coherent
of interacting shocks is very tightly knit. Clumps have low yelocity gradients can build up across the volume compared
masses and the time interval between two shock fronts pasg; small-scale turbulence.

ing through the same location is small, hence, swept-up gas The tendency for the zero-mean Gaussian driving mecha-
cannot travel far before being dispersed again. The densityisms to induce significant center-of-mass drift velocities in
and veIpcny structure of three models W'th. Iar.ge-, highly compressible media can be understood as follows.
intermediate-, and small-wavelength turbulences is V'SuaISuppose the gas is perturbed by one single mode in form of

ized in Fig. 1. It shows cuts through the centers of the SIMU= Gine wave. If the medium is homogeneous and incompress-

lated volume. As turbulence is stationary, all times are :
: . : |tEIe, equal amounts of mass would be accelerated in the for-
equivalent, and the snapshot in the upper panel is taken aard as well as in the backward direction. But, if the me-
some arbitrary time. The lower panel depicts the system at, i inh h d b. T bal
some time interval later corresponding to 1/4 shock crossin ium 1s 'E omogg_neogs, erg \r/]vou le anldln; alance
time through the cube. One clearly notices markable differP€tWeen the two directions and the result would be a net

ences in the density and velocity fields between the thre@cceleration of the system. If the density distribution remains
models. fixed, this acceleration would be compensated by an equal

amount of deceleration after half a period, and the center of
o mass would simply oscillate. However, if the system is
A. Transport properties in an absolute reference frame highly compressible and the driving field is a superposition
In order to drive supersonic turbulence and to maintain af plane waves, the density distribution would change con-
given rms Mach number in the flow, we use a random Gausginuously (and randomly. Any net acceleration at one in-
ian velocity field with zero mean to “agitate” the fluid ele- stance in time would not be completely compensated after
ments at each time step. However, despite the fact that theome finite time interval later. This will only occur fdr
driving scheme has zero mean, the system is likely to expe-+co assuming ergodicity of the flow. Subsequently, the sys-
rience a net acceleration and develop an appreciable drifem is expected to develop a net flow velocity in some ran-
velocity, because of the compressibility of the medium. Thisdom direction fort <. This effect is most clearly noticeable
evolutionary trend is well illustrated in Fig. 2 which plots the for long-wavelength turbulence, where density and velocity
time evolution of the three components of the mean velocitystructure is dominated by the coherent large-scale structure.
for models Z, 2i, and %, with rms Mach numbers\t But the effect is small for turbulence that is excited on small
~3.1, where turbulence is driven of@ large (i.e., with  scales, because in this limit, there is a large number of ac-

1.0

FIG. 3. Time evolution of the diffusion coefficielﬁl(t)zd([ﬂ(t)—Fi(O)]Z)i /dt for models Z, 2i, and 3 computed in an absolute
reference frame. All units are normalized as described in Sec. III.
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celerated “cells” which in turn compensate for another’s reference frame that follows the mean motion of the flow,
acceleration. diffusion in compressible supersonically turbulent media in-
The property that the compressible turbulent flows aredeed behaves in a normal manner. For small time intervals
likely to pick up average drift velocities, even when driven t<r, however, the system still exhibits an anomalous diffu-
by Gaussian fields with zero mean, has implications for thesion even with the mean-motion correction. In this regime
transport coefficients. Figure 3 shows the time evolution ofD’(t) grows roughly linearly with time. For> 7 the diffu-
the absolutgEulerian diffusion coefficientsD,, D,, and  sion coefficientD’(t) reaches an asymptotic limit. This re-
D, in each spatial direction computed from Edj). Note that  sult holds for the entire range of Mach numbers studied and
for stationary turbulence, only time differences are relevanfor turbulence that is maintained by energy input on very
and one is free to choose the initial time. In order to improvedifferent spatial scales.

the statistical significance of the analysis, we obtBift) From Fig. 4, we find that diffusion in compressible super-
and &;(t) by further averaging over all time intervaighat  sonic turbulent flows follows a universal law. It can be ob-
“fit into” the full time span of the simulation. tained by using the rms Mach numbébgether with the

Due to the(continuou$ net acceleration experienced by sound speed,) as characterizing parameter for rescaling the
the system, the quantitf(t) grows faster than linearly with velocity dispersiono, , and the rms shock crossing time
time, even for intervals much larger than the correlation timeScale through the volumg,,.s=L/(Mcg) for rescaling the
7, i.e., for r<t<o. The system resides in a superdiffusive time. The normalized diffusion coefficief’(t) exhibits a
regime, whereD(t) does not saturate. Instead(t) grows uni\_/ersal slope of 2 at times< 7 (i.e., in the superdiffusive
continuously with time, which is most evident in modefl 2 '€gime, and approaches a constant value that depends only

of large-scale turbulence. The ever increasing drift velocity" the length scale but not on the strengta., the resulting

(5,(1)); causes strong velocity correlations leading to a conMach numbey of the mechanism that drives the turbulence.

tinuous growth of the velocity autocorrelation tensor Eveq for highly co_mpressiblg superspnic trbulent flov_vs itis
fire(t’)dt’. This net motion, however, can be correctedeSS'ble to find simple scaling relations to characterize the
0 . 1 l

; lowi 1o studyv the di ) f varticles i ftransport properties—analogous to the mixing-length de-
or, allowing us to study the diSpersion of partcies in a re “scription of diffusive processes in incompressible subsonic
erence frame that moves along with the average flow velo

ity of the system, Surbulent flows.

B. Transport properties in flow coordinates V. A MIXING-LENGTH DESCRIPTION

In order to gain further |ns|ght into the transport proper- . |n00mpreSSib|e tUrbUlence is often described in terms of a
ties of compressible supersonic turbulent flows, we study th&ierarchy of turbulent eddies, where each eddy contains mul-
time evolution of the re|ativé|_agrangia[)] diffusion coeffi- tlple eddies of smaller size on the lower levels of the hierar-

cient. In this prescription, chy, while itself being a part of turbulent eddy at larger
, scales[53-55. At each level of the hierarchy, an eddy is

e déx(t) characterized by a typical length scdl@nd a typical veloc-

D'(t)= dt ©®) ity v. The typical lifetime of an eddy is its “turnover” time

. _ _ . 7=4¢/v. This mixing-length prescription is an attempt to
is obtained relative to a frame of reference which comovegharacterize the flow properties in terms of the typical scales

with the mean motion of the systefu;(t)); on the trajectory 7 andy. For example, this classical picture defines an effec-

(ri(1)i=Jo(vi(t"))dt’. Then, tive “eddy” viscosity u=pfv, wherep is the density. The
2. g TP 2 mixing length? is interpreted to be the turbulent analog of
&=t =({riO—(ri)—{r") = (rit"))i} 1% the mean free path of molecules in the kinetic theory of
[see Eq(D)]. gases, withy being the characteristic velocity of the turbu-

lent fluctuation.
In such a model, the velocities of gas molecules within an
dy are strongly correlated within a time interiat 7.

In Fig. 4, we show the evolution d’(t) for each coor-
dinate direction for the complete suite of models. The rms
Mach numbers range from about 0.5 to 10, each considere

for three cases where turbulence is driven on large, interme—hﬁy all follow the efzddy rort]anonl; th? dlff]l‘JSIOH prc:cesls IS
diate, and small scales, respectively. The plots are rescal&®€rent. However, for>r the velocities of gas molecules

such that the time-averaged one-dimensional rms velocit ecome uncorrelated, as the eddy has long begn destrqyed
di o= lized t it h directi nd dispersed. Hence, the velocity autocorrelation function
ispersions, is normalized to unitffor each direction sepa- vanishes for large time interval§(t)—0 for t—oo. Diffu-

rately. We a_lso r_escale the timewith respect to the average gisn pecomes incoherent as in Brownian motion or the ran-

shock crossing time scale through the com_putat|0nal VF)Iumedom walk. The diffusion coefficient in the mixing-length ap-

Lorosg=L/ 0, . Recall thatlL =1, and note that, usually dif- proach simply isD(t)~2v%t in the regimet<r, which

fers between the three spatial directions because of the vag- S s ~ - ~ .

ance effects, especially in models of large-scale turbulence(Cllows from replacingr (t) by vt andv(t) by v in Eq. (3).
In Fig. 4, we demonstrate that the magnitudeDof(t) ~ As the largest correlation length is the eddy siz€t) is

saturates for large time intervals 7 in all directions. In a  substituted by = 7 for timest> 7, and the classical mixing
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FIG. 4. Time evolution of the diffusion coefficielt’(t) :dgizldt computed in a reference frame that follows the average flow velocity
(thick ling, axis scaling on the left ordinate.e., is centered o(ﬂ(t))i:f},(ﬁi(t’)>idt’. Velocity dispersions along the three major axes
y, andz are each normalized to unity using the time-averaged one-dimensional Mach niuinfzerindicated in each plptogether with the
given value of the sound speegd (thin lines axis scaling on the right ordingtélimes are rescaled to the rms shock crossing time through
the simulated cubeg,.=L/o,=L/(Mcg). Details for each model are given in Table I. The horizontal gray shaded area indicates the
mixing-length prediction fort—, and the vertical gray and light gray shaded areas show a time intervadbf(kMcg) and 2r,
respectively. Fort< 7 diffusion should be anomalous and coherent, viith(t) growing linearly with time. The expected behavior from
mixing length theory in this regime is indicated by the straight line originatirtg=&. It indeed gives a good fit. Note that all models driven
on large scales (&£k=<2) exhibit a considerable degree of anisotropy, manifested by different rms Mach numbelsng the three
principal axes and different valus' (t). For the models with intermediate-scale and small-scale driving anisotropy effects are increasingly
less important.
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FIG. 5. Comparison between mixing-length predictions and numerical models. At the left we plot the normalized, mean-motion corrected
diffusion coefficientD”(t’) for t—<, and at the right its slopéD”(t’)/dt’ for t’ <1/k. For each suite of models, large-scale, intermediate-
scale, and small-scale turbulences, respectitedyindicated by the forcing wave numbeat the top of each plptwe separately show the
three velocity componeni@s indicated at the bottomThe different Mach numbers in each model suite are denoted by different symbols
(as identified at the right-hand side of each pldthe dotted lines give the corresponding prediction of the mixing-length thBdiy,’)
=2/k anddD"(t")/dt' =2, respectively, where we talketo be the maximum wave number of the forcing schémdicated at the top of
each plot.

length theory yield (t)~2¢v = 2v%r=const. D'(t)~2v%r~20,L/k. (10)
Compressible supersonic turbulent flows rapidly build up

a network of interacting shocks with highly transient density ~ This mixing-length approacfEgs.(9) and(10)] suggests
and velocity structure. Density fluctuations are generated bg unique scaling dependence of the diffusion coefficients in
locally converging flows, and their lifetimes are determinedsupersonic compressible flows on thkach numberM and
by the timer between two successive shock passages. Thign thelength scalef of the most energy containing modes
time interval is determined by the typical shock velocity, with respect to the total size L of the system considered
which is roughly the rms velocity of the flow, i.e., the Mach  We can useM (together with the given value of the
number times the sound speed,= Mcs. It also depends on  sound speedto normalize the rms velocityr, = Mcg>a,
the length scale at which energy is inserted into the systemte 1 And we can also rescale the time with respect to the rms
maintain the turbulence, which in our caselisk with k  shock crossing time scale through the total volume, which is
being the driving wave number ardbeing the size of the t_  =| /¢ =L/(Mc=teud M With teuL/Cs being
considered regiofrecall that in our models is unity). This  the sound crossing time, so that>t’ =t/t..s From this
length scale is also the typical traveling distance before tW\ormalization  procedure, we get D’ (t)—D"(t’)
shocks interact with each other. As basic ingredients for a- p’(t) Mc and obtain the following universal profile for
supersonic compressible mixing-length description, we camne diffusion coefficient:
thus identify the following:

_ D"(t")=2t" for t'<1k (12)

{~L/k, shock travel length, (7)

and

v~ag,=Mcs, rmsvelocity. (8) D'(t)=2k for t'>1k. (12)
The Lagranglan yelomty correlatlo_n time scaleis analo- Note that this result holds for each velocity component
gous to the time interval during which shock-generated denéeparately as the results in Fig. 4 indicate. In this case
sity fluctuation remains unperturbed and moves coherentl¥tands fora, &y, Of o, in EQs (9).and(10) aﬁd it holds for
before it is being dispersed by the interaction with a new, otal dxi1;fusyi(,)n céefficien.t when us’in — (02402
shock front. This time interval is equivalent to the time scaleJr o212 instead ’ 9 x Ty
a shqcthravgls a'°”9 s _mean fr~e~e pathi”with an rms Tzhe validity of the mixing-length approximation is quan-
velocity v. This crossing time is=€v~o, L/k. FOrt<7 tifiad in Fig. 5 which plots the mixing-length predictions
gas molecules can travel coherently within individual ShOCk'against the values obtained from the numerical models. For
generated density fluctuations, and the diffusion coefficienparge_sca|e and intermediate-scale turbulence, the mixing-

in the mixing-length prescription follows as length approach gives very satisfying results, only for small-
_ 5 scale turbulence it underestimates the diffusion strength. This
D’(t)~2v’t~207t. (9)  disparity probably has to do with the numerical resolution of

the code, in the sense that driving wave number&-e8
D’'(t) grows linearly with time with slope aﬁ. For large  come close to the dissipation scale of the method and hence
timest>r, D’(t) approaches a constant value, the inertial range of turbulence is limitd@1]. That limita-
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tion leads to an effective driving for the turbulent motion on giffusion coefficient based on the rms velocityof the flow
somewhat larger scales than 1/8. Consequently, it leads t0 8, the typical shock travel distanée

stronger diffusion, i.e., somewhat larger diffusion coeffi-

cients than those predicted by E¢$l) and(12). The same D'(t)=2v% for t<¥/v,
numerical effects also account for the slightly shallower . s
slope ofD’(t) for t< 7 for models &<k=<8. D'(t)=2vt for t>{/v.

Figures 4 and 5 indicate that the classical mixing-length _ _ ) )
theory can be extended from incompressitdebsonig tur- This functional form may be u_s_ed In thos_e numerical
bulence into the regime of supersonic turbulence of highly°dels where knowledge of the mixing properties of turbu-

i i , . ~ lent supersonic flows is required, but where these flows can-
compressible media. In this case, driving lengtland rms 15t pe adequately resolved. This is the case, for example, in
velocity dispersionr, = Mcs act as characteristic length and astrophysical simulations of galaxy formation and evolution,
velocity scales in the mixing-length approach. Note that thisyhere the chemical enrichment of the interstellar gas and the
only applies to mean-motion corrected transport. In generafjistribution and spreading of heavy elements produced from
(i.e., in an absolute reference frameupersonic turbulence massive stars throughout galactic disks need to be treated
in compressible media leads to superdiffusion as visualizedithout being able to follow the turbulent motion of inter-
in Fig. 3. stellar gas on small enough scales relevant to star formation

[57,58. Our results, furthermore, are directly relevant for
VI. SUMMARY understanding the properties of individual star-forming inter-
stellar gas clouds within the disk of our Milky Way. These

We studied diffusion processes in supersonically turbulenire dominated by supersonic turbulent motions which can
compressible media. To drive turbulence and maintain th@rovide support against gravitational collapse on global
desired rms Mach number in the flow, we insert energy intcscales, while at the same time produce localized density en-
the system at a prespecified rate and over a given spatilancements that allow for collapse, and thus stellar birth, on
scale using random Gaussian fields. In our numerical modsmall scales. The efficiency and time scale of star formation
els, the adopted magnitude of the rms Mach numbers rangé8 galactic gas clouds depend on the intricate interplay be-
from M=0.5 to M =10, and the turbulence was driven on tween their internal gravitational attraction and their turbu-
large, intermediate, and small scales. lent energy content52]. The same is true for the statistical

Supersonic turbulence in compressible media establishdyoperties of the resulting star clusters. For example, the el-
a complex network of interacting shocks. Converging shoci€ment abundances in young stellar clusters are found to be
fronts locally generate large density enhancements, diverginge’y homogeneoupd], implying that the gas out of which
flows create voids of low gas density. The fluctuations int'€S€ Stars formed must have been chemically well mixed

turbulent velocity fields are highly transient, as the randorﬂn'tia”y' On the basis of the results discussed here, this ob-

flow that creates local density enhancements can disper§§rv""t'0n can be usec_j to constrain astr_ophy5|cal model_s of
them again. interstellar turbulence in star-forming regions. Understanding

Due to compressibility, supersonically turbulent flows transport processes and e'e'.“?”t mixing i.n supersoni_c tgrbu—
will usually develop noticeable drift velocities, especially €Nt flows thus is a prerequisite for gaining deeper insight
when turbulence is driven on large scales, even when it ({10 the star-formation phenomenon in our Galaxy.
excited with Gaussian fields with zero mean. This tendency
has consequences for the transport properties in an absolute
reference frame. The flow exhibits superdiffusive behavior We thank Javier Ballesteros-Paredes, Peter Bodenheimer,
(see also Refl56]). However, when the diffusion process is Mordecai-Mark Mac Low, and Enrique Yguez-Semadeni
analyzed in a comoving coordinate system, i.e., when théor many stimulating discussions. R.S.K. acknowledges sup-
induced bulk motion is being corrected, the system exhibitport by the Emmy Noether Program of the Deutsche Fors-
normal behavior. The diffusion coefficiebi(t) saturates for chungsgemeinschafbFG, Grant No. KL1358/Land subsi-
large time intervals{— . dies through a NASA astrophysics theory program at the

By extending classical mixing-length theory into the su-joint Center for Star Formation Studies at NASA-Ames Re-
personic regime, we propose a simple description for theearch Center, UC Berkeley, and UC Santa Cruz.
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