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Diffusion in supersonic turbulent compressible flows
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We investigate diffusion in supersonic turbulent compressible flows. Supersonic turbulence can be charac-
terized as network of interacting shocks. We consider flows with different rms Mach numbers and where
energy necessary to maintain dynamical equilibrium is inserted at different spatial scales. We find that turbulent
transport exhibits superdiffusive behavior due to induced bulk motions. In a comoving reference frame, how-
ever, diffusion behaves normal and can be described by mixing-length theory extended into the supersonic
regime.
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I. INTRODUCTION

Laboratory and terrestrial gases and liquids are usu
well described by incompressible flows~e.g., Ref.@1#!. In
contrast, the dynamical behavior of typical astrophysi
gases are characterized by poorly understood highly c
pressible supersonic turbulent motion~see, e.g., Ref.@2#!.
For example, the large observed linewidths in large mole
lar clouds show direct evidence for the presence of cha
cally oriented velocity fields with magnitudes in excess
the sound speed. This random motion carries enough kin
energy to counterbalance and sometimes overcompensa
effects of self-gravity of these clouds@3#. The intricate inter-
play between supersonic turbulence and self-gravity de
mines the overall dynamical evolution of these clouds a
their observable features such as their density structure
star-formation rate within them, and their lifetimes. Thus
is important for the description of many astrophysical s
tems to understand in detail the momentum and heat tran
properties of compressible turbulent gases.

Some important clues on the nature and efficiency of m
ing associated with the clouds’ supersonic turbulence can
constrained by the observed metallicity distribution of t
stars formed within them. In the Pleiades cluster, stars wh
emerged from the same molecular cloud have nearly ide
cal metal abundance@4#. This astronomical context therefor
imposes a strong motivation for a general analysis of
transport and mixing processes in compressible supers
cally turbulent media.

Analytical and numerical studies of diffusion process
are typically restricted to certain families of statistical pr
cesses, such as random walk@5# or remapping models o
certain Hamiltonian systems@6#. The direct numerical mod
eling of turbulent physical flows mostly concentrates on
compressible media~e.g., Refs.@7–9#!, but some studies
have been extended into the weakly compressible reg
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@10–14#. Although highly compressible supersonic turbule
flows have been studied in several specific astrophysical c
texts@15–37#, the diffusion properties of such flows have n
been investigated in detail.

It is the goal of this paper to analyze transport phenom
in supersonic compressible turbulent flows and to dem
strate that—analogous to the incompressible case—a sim
mixing-length description can be found even for strong
supersonic and highly compressible turbulence. We fi
briefly recapitulate in Sec. II the Taylor formalism for de
scribing the efficiency of turbulent diffusion in subson
flows. In Sec. III, we describe the numerical method whi
we use to integrate the Navier-Stokes equation. In Sec.
we report the diffusion coefficient obtained in our numeric
models, and in Sec. V, we introduce an extension of the w
known mixing-length approach to diffusion into the supe
sonic compressible regime. Finally, in Sec. VI we summar
our results.

II. A STATISTICAL DESCRIPTION
OF TURBULENT DIFFUSION

Transport properties in fluids and gases can be chara
ized by studying the time evolution of the second cent
moment of some representative fluid-elements’ displacem
in the medium,

j rW
2
~ t2t8!5^@rW i~ t !2rW i~ t8!#2& i , ~1!

where the averagê•& i is taken over an ensemble of pa
sively advected tracer particlesi ~e.g., dye in a fluid, or
smoke in air! that are placed in the medium at a timet8 at
positionsrW i(t8); or where the average is taken over the flu
molecules themselves~or equivalently, over sufficiently
small and distinguishable fluid elements!. The dispersion
in one spatial direction, say along thex coordinate, is
jx

2(t2t8)5^@xi(t)2xi(t8)#2& i . For isotropic turbulence it
follows that jx

25jy
25jz

251/3j rW
2 . For fully developed sta-

tionary turbulence, the initial timet8 can be chosen at ran
dom and for simplicity is set to zero in what follows.
©2003 The American Physical Society11-1
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The quantityj rW(t) can be associated with the diffusio
coefficientD as derived for the classical diffusion equatio

]n

]t
5D¹2n, ~2!

where n(rW i ,t) is the probability distribution function for
finding a particlei at positionrW i(t) at timet when it initially
was at a locationrW i(0). This holds if the particle position is
a random variable with a Gaussian distribution@38#. In the
classical sense,n(rW,t) may correspond to the contamina
density in the medium. Equation~2! holds for normal diffu-
sion processes and for time scales larger than the typ
particles’ correlation time scalet.

In general, however, the Lagrangian diffusion coefficie
is time dependent and can be defined as

D~ t !5
dj rW

2
~ t !

dt
52^rW i~ t !•vW i~ t !& i , ~3!

wherevW i(t)5drW i(t)/dt is the Lagrangian velocity of the par
ticle. The diffusion coefficient along one spatial directio
say along thex coordinate, follows accordingly asDx

5djx
2(t)/dt52^xi(t)vx.i(t)& i . Equation~3! holds for homo-

geneous turbulence with zero-mean velocity. FromrW i(t)
5rW i(0)1*0

t vW i(t8)dt8 it follows that

D~ t !52K F rW i~0!1E
0

t

vW i~ t8!dt8G•vW i~ t !L
i

52E
0

t

^vW i~ t8!•vW i~ t !& idt8. ~4!

The above expression allows us to relateD(t) to the trace of
the Lagrangian velocity autocorrelation tensor trC(t2t8)
5^vW i(t8)•vW i(t)& i as

D~ t !52E
0

t

trC~ t2t8!dt852E
0

t

trC~ t8!dt8, ~5!

a result which was derived by Taylor already 1921 in@39#.
This formulation has the advantage that it is fully gene
and that it allows us to study anomalous diffusion proces
Note that strictly speaking any transport process withj rW(t)
not growing linearly in time is called anomalous diffusio
This is always the case for time intervals shorter than
correlation timet, but sometimes anomalous diffusion ca
also occur fort@t. If j rW(t)}ta and if a,1 transport pro-
cesses are calledsubdiffusive, if a.1 they are calledsuper-
diffusive@1,6,40,41#. Studying transport processes directly
terms of the particle displacement, i.e., Eq.~1!, is useful
when attempting to find simple approximations to the dif
sion coefficient D(t), for example, in a mixing-length
approach.
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III. NUMERICAL METHOD

In order to utilize the above formalism, we carry out
series of numerical simulation of supersonic turbulent flow
A variety of numerical schemes can be used to describe
time evolution of gases and fluids. By far the most wide
used and thoroughly studied class of methods is based on
finite difference representations of the equations of hydro
namics~e.g., Ref.@42#!. In the most simple implementation
the fluid properties are calculated on equidistant spati
fixed grid points in a Cartesian coordinate system. Fin
difference schemes have well defined mathematical con
gence properties, and can be generalized to very comp
time varying, nonequidistant meshes with arbitrary geome
cal properties. However, it is very difficult to obtain a La
grangian description, which is essential when dealing w
compressible supersonic turbulence with a high degree
vorticity. Methods that do not rely on any kind of mesh re
resentation at all are therefore highly desirable.

For the current investigation we use smoothed part
hydrodynamics~SPH!, which is a fully Lagrangian particle-
based method to solve the equations of hydrodynamics.
fluid is represented by an ensemble of particles, where fl
properties and thermodynamic observables are obtaine
local averages from a kernel smoothing procedure~typically
based on cubic spline functions! @43,44#. Each particlei is
characterized by massmi , velocity vW i , and positionrW i and
carries in addition densityr i , internal energye i or tempera-
ture Ti , and pressurepi . The SPH method is commonl
used in the astrophysics community because it can res
large density contrasts simply by increasing the particle c
centration in regions where it is needed. This versatility
important for handling compressible turbulent flows whe
density fluctuations will occur at random places and rand
times. The same scheme that allows for high spatial res
tion in high-density regions, however, delivers only limite
spatial resolution in low-density regions. There, the num
density of SPH particles is small and thus the volume nec
sary to obtain a meaningful local average tends to be la
Furthermore, SPH requires the introduction of a von Ne
mann Richtmyer artificial viscosity to prevent interpartic
penetration, shock fronts are thus smeared out over tw
three local smoothing lengths. Altogether, the performa
and convergence properties of the method are well un
stood and tested against analytic models and other nume
schemes, for example, in the context of turbulent superso
astrophysical flows@21,45–47#, and its intrinsic diffusivity is
sufficiently low to allow for the current investigation of tur
bulent diffusion phenomena@48#.

To simplify the analysis, we assume that the medium
infinite and isotropic on large scales, and consider a cu
volume which is subject to periodic boundary condition
The medium is described as an ideal gas with an isother
equation of state, i.e., pressurep relates to the densityr as
p5cs

2r with cs being the speed of sound. Throughout th
paper we adopt normalized units, where all physical c
stants~such as the gas constant!, total massM, mean density
^r&, and the linear sizeL of the cube all are set to unity. Th
speed of sound iscs50.05, hence, the sound crossing tim
1-2
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TABLE I. Model properties.

Model a k b M c tcross
d

s̄x
e s̄y

e s̄z
e Dx(`) f Dy(`) f Dz(`) f

2s̄x /k g 2s̄y /k g 2s̄z /k g

0, 1–2 0.6 35.3 0.030 0.028 0.027 0.027 0.021 0.019 0.030–0.060 0.028–0.057 0.027–
0i 3–4 0.5 39.1 0.026 0.026 0.025 0.010 0.010 0.009 0.013–0.017 0.013–0.017 0.013–
0s 7–8 0.4 46.2 0.021 0.022 0.022 0.005 0.005 0.005 0.005–0.006 0.005–0.006 0.005–
1, 1–2 1.9 10.4 0.106 0.084 0.098 0.140 0.069 0.111 0.106–0.213 0.084–0.167 0.098–
1i 3–4 1.9 10.6 0.097 0.096 0.092 0.042 0.047 0.038 0.048–0.065 0.048–0.064 0.046–
1s 7–8 1.7 11.5 0.086 0.089 0.087 0.025 0.026 0.024 0.021–0.024 0.022–0.025 0.022–
2, 1–2 3.1 6.5 0.173 0.129 0.158 0.223 0.103 0.169 0.173–0.346 0.129–0.257 0.158–
2i 3–4 3.1 6.4 0.167 0.155 0.151 0.084 0.071 0.063 0.083–0.111 0.077–0.103 0.075–
2s 7–8 3.2 6.3 0.154 0.163 0.157 0.044 0.054 0.047 0.038–0.044 0.041–0.046 0.039–
3, 1–2 5.2 3.8 0.301 0.252 0.227 0.314 0.245 0.169 0.301–0.603 0.252–0.505 0.227–
3i 3–4 5.8 3.5 0.261 0.287 0.316 0.131 0.189 0.233 0.130–0.174 0.143–0.191 0.158–
3s 7–8 5.8 3.4 0.297 0.288 0.289 0.106 0.092 0.091 0.074–0.085 0.072–0.082 0.072–
4, 1–2 8.2 2.4 0.467 0.318 0.444 0.693 0.241 0.558 0.467–0.933 0.318–0.635 0.444–
4i 3–4 9.7 2.1 0.451 0.478 0.520 0.248 0.323 0.349 0.225–0.301 0.239–0.319 0.260–
4s 7–8 10.4 1.9 0.532 0.513 0.519 0.194 0.167 0.170 0.133–0.152 0.128–0.147 0.130–

aModel identifier, with the letters,, i, ands standing for large-scale, intermediate-wavelength, and short-wavelength turbulences, r
tively.
bDriving wavelength interval.
cMean Mach number, defined as ratio between the time-averaged one-dimensional velocity dispersions̄v5321/2(s̄x

21s̄y
21s̄y

2)1/2 and the

isothermal sound speedcs, M5s̄v /cs. The values for the different velocity componentsx, y, andz may differ considerably, especially fo
large-wavelength turbulence. Please recall from Sec. III that the speed of sound iscs50.05, and thus the sound crossing timetsound520.
dAverage shock crossing time through the computational volume.
eTime-averaged velocity dispersion along the three principal axesx, y, and z, e.g., for the x component s̄x

25*0
t ^@vxi(t8)

2^vxi(t8)& i #
2& idt8/t.

fMean-motion corrected diffusion coefficients along the three principal axes computed from Eq.~3! for time intervalst@t.
gPredicted values of the mean-motion corrected diffusion coefficientsDx8 , Dy8 , and Dz8 from extending mixing-length theory into th
supersonic regime~Sec. V!.
e
fo

ly
r
T

an
m
te
in

th
e
a
e

ta
e

rty
ri
r-
ith

va

udy
we

ase

-
ur
pted
e
ld
ered
ge-

no-
is

ant.
nts

is
oge-
through the cube follows astsound520. In all models dis-
cussed here, the fluid is represented by an ensembl
205 379 SPH particles which gives sufficient resolution
the purpose of the current analysis.

Supersonic turbulence is known to decay rapid
@17,34,45,49–51#. Stationary turbulence in the interstella
medium therefore requires a continuous energy input.
generate and maintain the turbulent flow we introduce r
dom Gaussian forcing fields in a narrow range of wave nu
bers such that the total kinetic energy contained in the sys
remains approximately constant. We generate the forc
field for each direction separately and simply add up
three contributions. Thus, we excite both solenoidal as w
as compressible modes at the same time. The typical r
between the solenoidal and compressible energy compon
is between 2:1 and 3:1 in the resulting turbulent flow~see,
e.g., Fig. 8 in Ref.@21#!. We keep the forcing field fixed in
space, but adjust its amplitude in order to maintain a cons
energy input rate into the system compensating for the
ergy loss due to dissipation~for further details on the
method, see Refs.@20,21#!. This nonlocal driving scheme
allows us to exactly control the~spatial! scale which carries
the peak of the turbulent kinetic energy. It is this prope
that motivated our choice of random Gaussian fields as d
ing source. In reality the forcing of turbulence in the inte
stellar medium is likely to be a multiscale phenomenon w
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appreciable contributions from differential rotation~i.e.,
shear! in the galactic disk and energy input from superno
explosions ending the lives of massive stars@52#. Compa-
rable to the values observed in interstellar gas, we st
flows with Mach numbers in the range 0.5–10, where
define the Mach number from theone-dimensionalrms ve-
locity dispersionsv as M5sv /cs. For each value of the
Mach number we consider three different cases, one c
where turbulence is driven on large scales only~i.e., with
wave numbersk in the interval 1<k<2), intermediate-
wavelength turbulence (3<k<4), and small-scale turbu
lence (7<k<8), as summarized in Table I. Note that o
models are not subject to global shear because of the ado
periodic boundary conditions. We call turbulence ‘‘larg
scale’’ when the Fourier decomposition of the velocity fie
is dominated by the largest scales possible for the consid
volumeL3, i.e., the system becomes isotropic and homo
neous only on scales larger thanL. On scales belowL it may
exhibit a considerable degree of anisotropy. This is most
ticeable in the case 1<k<2 because wave number space
very poorly sampled and variance effects become signific
The system is dominated by one or two large shock fro
that cross through the medium. In the interval 7<k<8, the
number of Fourier modes contribution to the velocity field
large, and the system appears more isotropic and hom
1-3
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FIG. 1. Density and velocity structure of models 2,, 2i , and 2s ~from left to right!. The panels show cuts through the center of t
computational volume normal to the three principal axes of the system, after one shock crossing timetcross5L/sv'6.5 and 1/4tcross later.
Density is scaled logarithmically as indicated in the gray scale key at the upper left side. The maximum density is;100, while the mean
density is one in the normalized units used. Vectors indicate the velocity field in the plane. The rms Mach number isM'3.1. Large-scale
turbulence (2,) is dominated by large coherent density and velocity gradients leading to a large degree of anisotropy, whereas sm
turbulence (2s) exhibits noticeable structure only on small scales with the overall density structure being relatively homogeneo
isotropic.
el
pr
ss
n
r-
s
ds
th
ur
on
ge
ga
e
ea
, d
e
ga

ible

hes
ck
ing
a-

he
dis-
ted
ive
h in
the

e
cks
at-
neous already on distances smaller thanL. This trend is
clearly visible in Fig. 1.

Similar to any other numerical calculations, the mod
discussed here fall short of describing real gases in com
hensive details as they cannot include all physical proce
that may act on the medium. In interstellar gas clouds, tra
port properties and chemical mixing will not only be dete
mined by the compressible turbulence alone, but the den
and velocity structure is also influenced by magnetic fiel
chemical reactions, and radiation transfer processes. Fur
more, all numerical models are resolution limited. The t
bulent inertial range in our large-scale turbulence simulati
spans over about 1.5 decades in wave number. This ran
considerably less than what is observed in interstellar
clouds. The same limitation holds for the Reynolds numb
achieved in the models, they fall short of the values in r
gas clouds by several orders of magnitude. Nevertheless
spite these obvious shortcomings, the results derived her
characterize global transport properties in interstellar
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clouds and in other supersonically turbulent compress
flows.

IV. TRANSPORT PROPERTIES

Supersonic turbulence in compressible media establis
a complex network of interacting shocks. Converging sho
fronts locally generate large density enhancements, diverg
flows create rarefied voids of low gas density. The fluctu
tions in turbulent velocity fields are highly transient, as t
random flow that creates local density enhancements can
perse them again. The lifetime of individual shock-genera
clumps corresponds to the time interval for two success
shocks to pass through the same location in space, whic
turn depends on the length scale of turbulence and on
Mach number of the flow.

The velocity field of turbulence that is driven at larg
wavelengths is found to be dominated by large-scale sho
which are very efficient in sweeping up material, thus cre
1-4
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FIG. 2. Time evolution of the mean flow velocity^vW i(t)& i in models 2,, 2i , and 2s. Time t and velocityv are given in normalized units
~Sec. III!.
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ing massive coherent density structures. The shock pas
time is rather long, and shock-generated clumps can tr
quite some distance before being disrupted. On the cont
when energy is inserted mainly on small scales, the netw
of interacting shocks is very tightly knit. Clumps have lo
masses and the time interval between two shock fronts p
ing through the same location is small, hence, swept-up
cannot travel far before being dispersed again. The den
and velocity structure of three models with large
intermediate-, and small-wavelength turbulences is visu
ized in Fig. 1. It shows cuts through the centers of the sim
lated volume. As turbulence is stationary, all times a
equivalent, and the snapshot in the upper panel is take
some arbitrary time. The lower panel depicts the system
some time interval later corresponding to 1/4 shock cross
time through the cube. One clearly notices markable dif
ences in the density and velocity fields between the th
models.

A. Transport properties in an absolute reference frame

In order to drive supersonic turbulence and to maintai
given rms Mach number in the flow, we use a random Gau
ian velocity field with zero mean to ‘‘agitate’’ the fluid ele
ments at each time step. However, despite the fact that
driving scheme has zero mean, the system is likely to ex
rience a net acceleration and develop an appreciable
velocity, because of the compressibility of the medium. T
evolutionary trend is well illustrated in Fig. 2 which plots th
time evolution of the three components of the mean velo
for models 2,, 2i , and 2s, with rms Mach numbersM
'3.1, where turbulence is driven on~a! large ~i.e., with
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small wave numbers 1<k<2), ~b! intermediate (3<k
<4), and~c! small scales~with 7<k<8). The net accelera
tion is most pronounced when turbulent energy is inserted
the global scales, as in this case larger and more cohe
velocity gradients can build up across the volume compa
to small-scale turbulence.

The tendency for the zero-mean Gaussian driving mec
nisms to induce significant center-of-mass drift velocities
highly compressible media can be understood as follo
Suppose the gas is perturbed by one single mode in form
a sine wave. If the medium is homogeneous and incompr
ible, equal amounts of mass would be accelerated in the
ward as well as in the backward direction. But, if the m
dium is inhomogeneous, there would be an imbalan
between the two directions and the result would be a
acceleration of the system. If the density distribution rema
fixed, this acceleration would be compensated by an eq
amount of deceleration after half a period, and the cente
mass would simply oscillate. However, if the system
highly compressible and the driving field is a superposit
of plane waves, the density distribution would change c
tinuously ~and randomly!. Any net acceleration at one in
stance in time would not be completely compensated a
some finite time interval later. This will only occur fort
→` assuming ergodicity of the flow. Subsequently, the s
tem is expected to develop a net flow velocity in some r
dom direction fort,`. This effect is most clearly noticeabl
for long-wavelength turbulence, where density and veloc
structure is dominated by the coherent large-scale struct
But the effect is small for turbulence that is excited on sm
scales, because in this limit, there is a large number of
FIG. 3. Time evolution of the diffusion coefficientD(t)5d^@rW i(t)2rW i(0)#2& i /dt for models 2,, 2i , and 2s computed in an absolute
reference frame. All units are normalized as described in Sec. III.
1-5
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R. S. KLESSEN AND D. N. C. LIN PHYSICAL REVIEW E67, 046311 ~2003!
celerated ‘‘cells’’ which in turn compensate for anothe
acceleration.

The property that the compressible turbulent flows
likely to pick up average drift velocities, even when drive
by Gaussian fields with zero mean, has implications for
transport coefficients. Figure 3 shows the time evolution
the absolute~Eulerian! diffusion coefficientsDx , Dy , and
Dz in each spatial direction computed from Eq.~1!. Note that
for stationary turbulence, only time differences are relev
and one is free to choose the initial time. In order to impro
the statistical significance of the analysis, we obtainD(t)
and j rW(t) by further averaging over all time intervalst that
‘‘fit into’’ the full time span of the simulation.

Due to the~continuous! net acceleration experienced b
the system, the quantityj rW

2(t) grows faster than linearly with
time, even for intervals much larger than the correlation ti
t, i.e., for t!t,`. The system resides in a superdiffusi
regime, whereD(t) does not saturate. Instead,D(t) grows
continuously with time, which is most evident in model 2,
of large-scale turbulence. The ever increasing drift veloc

^vW i(t)& i causes strong velocity correlations leading to a c
tinuous growth of the velocity autocorrelation tens
*0

t tr C(t8)dt8. This net motion, however, can be correct
for, allowing us to study the dispersion of particles in a r
erence frame that moves along with the average flow ve
ity of the system.

B. Transport properties in flow coordinates

In order to gain further insight into the transport prope
ties of compressible supersonic turbulent flows, we study
time evolution of the relative~Lagrangian! diffusion coeffi-
cient. In this prescription,

D8~ t !5
dj rW

2
~ t !

dt
~6!

is obtained relative to a frame of reference which como
with the mean motion of the system̂vW i(t)& i on the trajectory

^rW i(t)& i5*0
t ^vW i(t8)& idt8. Then,

j rW
2
~ t2t8!5^@$rW i~ t !2^rW i~ t !& i%2$rW i~ t8!2^rW i~ t8!& i%#2& i

@see Eq.~1!#.
In Fig. 4, we show the evolution ofD8(t) for each coor-

dinate direction for the complete suite of models. The r
Mach numbers range from about 0.5 to 10, each consid
for three cases where turbulence is driven on large, inter
diate, and small scales, respectively. The plots are resc
such that the time-averaged one-dimensional rms velo
dispersions̄v is normalized to unity~for each direction sepa
rately!. We also rescale the timet with respect to the averag
shock crossing time scale through the computational volu
tcross5L/s̄v . Recall thatL51, and note thats̄v usually dif-
fers between the three spatial directions because of the
ance effects, especially in models of large-scale turbulen

In Fig. 4, we demonstrate that the magnitude ofD8(t)
saturates for large time intervalst.t in all directions. In a
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reference frame that follows the mean motion of the flo
diffusion in compressible supersonically turbulent media
deed behaves in a normal manner. For small time interv
t,t, however, the system still exhibits an anomalous dif
sion even with the mean-motion correction. In this regim
D8(t) grows roughly linearly with time. Fort.t the diffu-
sion coefficientD8(t) reaches an asymptotic limit. This re
sult holds for the entire range of Mach numbers studied
for turbulence that is maintained by energy input on ve
different spatial scales.

From Fig. 4, we find that diffusion in compressible supe
sonic turbulent flows follows a universal law. It can be o
tained by using the rms Mach number~together with the
sound speedcs) as characterizing parameter for rescaling t
velocity dispersionsv , and the rms shock crossing tim
scale through the volumetcross5L/(Mcs) for rescaling the
time. The normalized diffusion coefficientD8(t) exhibits a
universal slope of 2 at timest,t ~i.e., in the superdiffusive
regime!, and approaches a constant value that depends
on the length scale but not on the strength~i.e., the resulting
Mach number! of the mechanism that drives the turbulenc
Even for highly compressible supersonic turbulent flows i
possible to find simple scaling relations to characterize
transport properties—analogous to the mixing-length
scription of diffusive processes in incompressible subso
turbulent flows.

V. A MIXING-LENGTH DESCRIPTION

Incompressible turbulence is often described in terms o
hierarchy of turbulent eddies, where each eddy contains m
tiple eddies of smaller size on the lower levels of the hier
chy, while itself being a part of turbulent eddy at larg
scales@53–55#. At each level of the hierarchy, an eddy
characterized by a typical length scale,̃ and a typical veloc-
ity ṽ. The typical lifetime of an eddy is its ‘‘turnover’’ time
t5 ,̃/ ṽ. This mixing-length prescription is an attempt
characterize the flow properties in terms of the typical sca
,̃ andṽ. For example, this classical picture defines an eff
tive ‘‘eddy’’ viscosity m5r ,̃ ṽ, wherer is the density. The
mixing length ,̃ is interpreted to be the turbulent analog
the mean free path of molecules in the kinetic theory
gases, withṽ being the characteristic velocity of the turbu
lent fluctuation.

In such a model, the velocities of gas molecules within
eddy are strongly correlated within a time intervalt,t.
They all follow the eddy rotation; the diffusion process
coherent. However, fort@t the velocities of gas molecule
become uncorrelated, as the eddy has long been destr
and dispersed. Hence, the velocity autocorrelation func
vanishes for large time intervals,C(t)→0 for t→`. Diffu-
sion becomes incoherent as in Brownian motion or the r
dom walk. The diffusion coefficient in the mixing-length ap
proach simply isD(t)'2ṽ2t in the regime t,t, which
follows from replacingrW(t) by ṽt andvW (t) by ṽ in Eq. ~3!.
As the largest correlation length is the eddy size,rW(t) is
substituted by,̃5 ṽt for timest@t, and the classical mixing
1-6
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DIFFUSION IN SUPERSONIC, TURBULENT, . . . PHYSICAL REVIEW E 67, 046311 ~2003!
FIG. 4. Time evolution of the diffusion coefficientD8(t)5dj i
2/dt computed in a reference frame that follows the average flow velo

~thick line, axis scaling on the left ordinate!, i.e., is centered on̂rW i(t)& i5*0
t ^vW i(t8)& idt8. Velocity dispersions along the three major axesx,

y, andz are each normalized to unity using the time-averaged one-dimensional Mach numberM ~as indicated in each plot! together with the
given value of the sound speedcs ~thin lines, axis scaling on the right ordinate!. Times are rescaled to the rms shock crossing time thro
the simulated cubetcross5L/sv5L/(Mcs). Details for each model are given in Table I. The horizontal gray shaded area indicate
mixing-length prediction fort→`, and the vertical gray and light gray shaded areas show a time interval oft5L/(kMcs) and 2t,
respectively. Fort!t diffusion should be anomalous and coherent, withD8(t) growing linearly with time. The expected behavior fro
mixing length theory in this regime is indicated by the straight line originating att50. It indeed gives a good fit. Note that all models driv
on large scales (1<k<2) exhibit a considerable degree of anisotropy, manifested by different rms Mach numbersM along the three
principal axes and different valuesD8(t). For the models with intermediate-scale and small-scale driving anisotropy effects are increa
less important.
046311-7
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FIG. 5. Comparison between mixing-length predictions and numerical models. At the left we plot the normalized, mean-motion c
diffusion coefficientD9(t8) for t→`, and at the right its slopedD9(t8)/dt8 for t8!1/k. For each suite of models, large-scale, intermedia
scale, and small-scale turbulences, respectively~as indicated by the forcing wave numberk at the top of each plot!, we separately show the
three velocity components~as indicated at the bottom!. The different Mach numbers in each model suite are denoted by different sym
~as identified at the right-hand side of each plot!. The dotted lines give the corresponding prediction of the mixing-length theory,D9(t8)
52/k anddD9(t8)/dt852, respectively, where we takek to be the maximum wave number of the forcing scheme~indicated at the top of
each plot!.
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length theory yieldsD(t)'2,̃ ṽ52ṽ2t5const.
Compressible supersonic turbulent flows rapidly build

a network of interacting shocks with highly transient dens
and velocity structure. Density fluctuations are generated
locally converging flows, and their lifetimes are determin
by the timet between two successive shock passages. T
time interval is determined by the typical shock veloci
which is roughly the rms velocity of the flow, i.e., the Mac
number times the sound speed,sv5Mcs. It also depends on
the length scale at which energy is inserted into the system
maintain the turbulence, which in our case isL/k with k
being the driving wave number andL being the size of the
considered region~recall that in our modelsL is unity!. This
length scale is also the typical traveling distance before
shocks interact with each other. As basic ingredients fo
supersonic compressible mixing-length description, we
thus identify the following:

,̃'L/k, shock travel length, ~7!

ṽ'sv5Mcs, rms velocity. ~8!

The Lagrangian velocity correlation time scalet is analo-
gous to the time interval during which shock-generated d
sity fluctuation remains unperturbed and moves cohere
before it is being dispersed by the interaction with a n
shock front. This time interval is equivalent to the time sc
a shock travels along its ‘‘mean free path’’,̃ with an rms
velocity ṽ. This crossing time ist5 ,̃ ṽ'sv L/k. For t,t
gas molecules can travel coherently within individual sho
generated density fluctuations, and the diffusion coeffici
in the mixing-length prescription follows as

D8~ t !'2ṽ2t'2sv
2t. ~9!

D8(t) grows linearly with time with slope 2sv
2 . For large

times t@t, D8(t) approaches a constant value,
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D8~ t !'2ṽ2t'2svL/k. ~10!

This mixing-length approach@Eqs.~9! and~10!# suggests
a unique scaling dependence of the diffusion coefficients
supersonic compressible flows on theMach numberM and
on the length scale,̃ of the most energy containing mode
with respect to the total size L of the system considered.

We can useM ~together with the given value of th
sound speed! to normalize the rms velocity:sv5Mcs°sv8
51. And we can also rescale the time with respect to the
shock crossing time scale through the total volume, which
tcross5L/sv5L/(Mcs)5tsound/M with tsound5L/cs being
the sound crossing time, so thatt°t85t/tcross. From this
normalization procedure, we get D8(t)°D9(t8)
5D8(t)McsL and obtain the following universal profile fo
the diffusion coefficient:

D9~ t8!52t8 for t8!1/k ~11!

and

D9~ t8!52/k for t8@1/k. ~12!

Note that this result holds for each velocity compone
separately, as the results in Fig. 4 indicate. In this casesv
stands forsx , sy , or sz in Eqs.~9! and~10!, and it holds for
the total diffusion coefficient, when usingsv5(sx

21sy
2

1sz
2)1/2 instead.

The validity of the mixing-length approximation is quan
tified in Fig. 5 which plots the mixing-length prediction
against the values obtained from the numerical models.
large-scale and intermediate-scale turbulence, the mix
length approach gives very satisfying results, only for sm
scale turbulence it underestimates the diffusion strength. T
disparity probably has to do with the numerical resolution
the code, in the sense that driving wave numbers ofk'8
come close to the dissipation scale of the method and he
the inertial range of turbulence is limited@21#. That limita-
1-8
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DIFFUSION IN SUPERSONIC, TURBULENT, . . . PHYSICAL REVIEW E 67, 046311 ~2003!
tion leads to an effective driving for the turbulent motion
somewhat larger scales than 1/8. Consequently, it leads
stronger diffusion, i.e., somewhat larger diffusion coe
cients than those predicted by Eqs.~11! and ~12!. The same
numerical effects also account for the slightly shallow
slope ofD8(t) for t!t for models 7<k<8.

Figures 4 and 5 indicate that the classical mixing-len
theory can be extended from incompressible~subsonic! tur-
bulence into the regime of supersonic turbulence of hig
compressible media. In this case, driving length,̃ and rms
velocity dispersionsv5Mcs act as characteristic length an
velocity scales in the mixing-length approach. Note that t
only applies to mean-motion corrected transport. In gen
~i.e., in an absolute reference frame!, supersonic turbulence
in compressible media leads to superdiffusion as visuali
in Fig. 3.

VI. SUMMARY

We studied diffusion processes in supersonically turbu
compressible media. To drive turbulence and maintain
desired rms Mach number in the flow, we insert energy i
the system at a prespecified rate and over a given sp
scale using random Gaussian fields. In our numerical m
els, the adopted magnitude of the rms Mach numbers ran
from M50.5 toM510, and the turbulence was driven o
large, intermediate, and small scales.

Supersonic turbulence in compressible media establis
a complex network of interacting shocks. Converging sho
fronts locally generate large density enhancements, diver
flows create voids of low gas density. The fluctuations
turbulent velocity fields are highly transient, as the rand
flow that creates local density enhancements can disp
them again.

Due to compressibility, supersonically turbulent flow
will usually develop noticeable drift velocities, especia
when turbulence is driven on large scales, even when
excited with Gaussian fields with zero mean. This tende
has consequences for the transport properties in an abs
reference frame. The flow exhibits superdiffusive behav
~see also Ref.@56#!. However, when the diffusion process
analyzed in a comoving coordinate system, i.e., when
induced bulk motion is being corrected, the system exhi
normal behavior. The diffusion coefficientD(t) saturates for
large time intervals,t→`.

By extending classical mixing-length theory into the s
personic regime, we propose a simple description for
m

e

04631
a

r

h

y

s
al

d

t
e
o
ial
d-
es

es
k
ng

se

is
y
ute
r

e
ts

-
e

diffusion coefficient based on the rms velocityṽ of the flow
and the typical shock travel distance,̃,

D8~ t !52ṽ2t for t! ,̃/ ṽ,

D8~ t !52ṽ ,̃ for t@ ,̃/ ṽ.

This functional form may be used in those numeric
models where knowledge of the mixing properties of turb
lent supersonic flows is required, but where these flows c
not be adequately resolved. This is the case, for example
astrophysical simulations of galaxy formation and evolutio
where the chemical enrichment of the interstellar gas and
distribution and spreading of heavy elements produced fr
massive stars throughout galactic disks need to be tre
without being able to follow the turbulent motion of inte
stellar gas on small enough scales relevant to star forma
@57,58#. Our results, furthermore, are directly relevant f
understanding the properties of individual star-forming int
stellar gas clouds within the disk of our Milky Way. Thes
are dominated by supersonic turbulent motions which
provide support against gravitational collapse on glo
scales, while at the same time produce localized density
hancements that allow for collapse, and thus stellar birth,
small scales. The efficiency and time scale of star format
in galactic gas clouds depend on the intricate interplay
tween their internal gravitational attraction and their turb
lent energy content@52#. The same is true for the statistica
properties of the resulting star clusters. For example, the
ement abundances in young stellar clusters are found to
very homogeneous@4#, implying that the gas out of which
these stars formed must have been chemically well mi
initially. On the basis of the results discussed here, this
servation can be used to constrain astrophysical model
interstellar turbulence in star-forming regions. Understand
transport processes and element mixing in supersonic tu
lent flows thus is a prerequisite for gaining deeper insi
into the star-formation phenomenon in our Galaxy.
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